Ant yon antye n ki pi gran ke 1 e doub antye sila a, toujou gen yon nonm premye.
se yon teyorèm ki te konjektire pa Bertrand e ki demontre an 1850 pou lapremyè fwa pa matematisyen ris Tchebycheff
Gen plizyè varyant pou demontre teyorèm oubyen postila a. Men de ladan yo ki privilejye apwòch elemantè.
Premyè demach la ap mennen nou redemontre tankou yon lèm ke
2
2
n
2
n
<
N
<
2
2
n
2
n
{\displaystyle {\frac {2^{2n}}{2{\sqrt {n}}}}<N<{\frac {2^{2n}}{\sqrt {2n}}}}
pou tout n ki siperyè ou egal ak 2 avèk
N
=
C
2
n
n
=
(
2
n
n
)
{\displaystyle N=C_{2n}^{n}={{2n} \choose n}}
N
=
(
(
2
n
)
!
)
(
n
!
)
×
(
2
n
−
n
)
!
{\displaystyle N={\frac {\left(\left(2n\right)!\right)}{\left(n!\right)\times \left(2n-n\right)!}}}
N
=
(
(
2
n
)
!
)
(
n
!
)
×
(
n
)
!
{\displaystyle N={\frac {\left(\left(2n\right)!\right)}{\left(n!\right)\times \left(n\right)!}}}
N
=
(
(
2
n
)
!
)
(
n
!
)
2
{\displaystyle N={\frac {\left(\left(2n\right)!\right)}{\left(n!\right)^{2}}}}
Nou pale de redemontre paske se yon demonstrasyon ki te la deja ....
An nou konsidere pwodui tout antye enpè yo divize pa pwodui tout antye pè yo ki enferyè oubyen egal ak 2n
Konfòmeman ak Arnel Mercier ak Jean Marie de Koninck an desiye pwodui sa pa P
P
=
1
×
×
3
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
2
×
4
×
.
.
.
×
(
2
n
−
2
)
×
2
n
{\displaystyle P={\frac {1\times \times 3\times ...\times \left(2n-3\right)\times \left(2n-1\right)}{2\times 4\times ...\times \left(2n-2\right)\times 2n}}}
An nou fè parèt anlè ya pwodui ki anba a
P
=
1
×
×
3
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
2
×
4
×
.
.
.
×
(
2
n
−
2
)
×
2
n
×
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
{\displaystyle P={\frac {1\times \times 3\times ...\times \left(2n-3\right)\times \left(2n-1\right)}{2\times 4\times ...\times \left(2n-2\right)\times 2n}}\times {\frac {2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n}{2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n}}}
P
=
(
1
×
×
3
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
)
×
(
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
)
2
×
4
×
.
.
.
×
(
2
n
−
2
)
×
2
n
×
(
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
)
{\displaystyle P={\frac {\left(1\times \times 3\times ...\times \left(2n-3\right)\times \left(2n-1\right)\right)\times \left(2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n\right)}{2\times 4\times ...\times \left(2n-2\right)\times 2n\times \left(2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n\right)}}}
P
=
(
2
n
)
!
(
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
)
2
{\displaystyle P={\frac {\left(2n\right)!}{\left(2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n\right)^{2}}}}
P
=
(
2
n
)
!
(
2
×
1
×
2
×
2
×
2
×
3
×
.
.
.
×
2
×
(
n
−
1
)
×
2
×
n
)
2
{\displaystyle P={\frac {\left(2n\right)!}{{\left(2\times 1\times 2\times 2\times 2\times 3\times ...\times 2\times \left(n-1\right)\times 2\times n\right)}^{2}}}}
P
=
(
2
n
)
!
(
2
n
×
n
!
)
2
{\displaystyle P={\frac {\left(2n\right)!}{{\left(2^{n}\times n!\right)}^{2}}}}
P
=
(
2
n
)
!
(
2
n
)
2
×
(
n
!
)
2
{\displaystyle P={\frac {\left(2n\right)!}{{\left(2^{n}\right)}^{2}\times {\left(n!\right)}^{2}}}}
P
=
(
2
n
)
!
2
2
n
×
(
n
!
)
2
{\displaystyle P={\frac {\left(2n\right)!}{2^{2n}\times {\left(n!\right)}^{2}}}}
P
×
2
2
n
=
(
2
n
)
!
2
2
n
×
(
n
!
)
2
×
2
2
n
{\displaystyle P\times {2^{2n}}={\frac {\left(2n\right)!}{2^{2n}\times {\left(n!\right)}^{2}}}\times {2^{2n}}}
P
×
2
2
n
=
(
2
n
)
!
(
n
!
)
2
{\displaystyle P\times {2^{2n}}={\frac {\left(2n\right)!}{{\left(n!\right)}^{2}}}}
P
×
2
2
n
=
N
{\displaystyle P\times {2^{2n}}=N}
An nou konsidere
∏
i
=
1
n
(
1
−
1
(
2
i
)
2
)
{\displaystyle \prod _{i=1}^{n}{\left(1-{\frac {1}{{\left(2i\right)}^{2}}}\right)}{}}
si nou devlope pwodui nap genyen
∏
i
=
1
n
(
1
−
1
(
2
i
)
2
)
=
(
1
−
1
2
2
)
×
(
1
−
1
4
2
)
×
(
1
−
1
6
2
)
×
.
.
.
×
(
1
−
1
(
2
n
−
2
)
2
)
×
(
1
−
1
(
2
n
)
2
)
{\displaystyle \prod _{i=1}^{n}{\left(1-{\frac {1}{{\left(2i\right)}^{2}}}\right)}=\left(1-{\frac {1}{2^{2}}}\right)\times \left(1-{\frac {1}{4^{2}}}\right)\times \left(1-{\frac {1}{6^{2}}}\right)\times ...\times \left(1-{\frac {1}{{\left(2n-2\right)}^{2}}}\right)\times \left(1-{\frac {1}{{\left(2n\right)}^{2}}}\right)}
chak faktè yo estrikteman pozitif epi yo enferyè ak 1 , kidonk pwodui li menm tou enferyè ak 1.
∏
i
=
1
n
(
1
−
1
(
2
i
)
2
)
<
1
{\displaystyle \prod _{i=1}^{n}{\left(1-{\frac {1}{{\left(2i\right)}^{2}}}\right)}{<1}}
∏
i
=
1
n
(
(
4
i
)
2
−
1
(
2
i
)
2
)
<
1
{\displaystyle \prod _{i=1}^{n}{\left({\frac {{\left(4i\right)}^{2}-1}{{\left(2i\right)}^{2}}}\right)}{<1}}
∏
i
=
1
n
(
(
2
i
−
1
)
(
2
i
+
1
)
(
2
i
)
2
)
<
1
{\displaystyle \prod _{i=1}^{n}{\left({\frac {\left(2i-1\right)\left(2i+1\right)}{{\left(2i\right)}^{2}}}\right)}{<1}}
sa ki bay
(
1
×
3
2
2
)
×
(
3
×
5
4
2
)
×
(
5
×
7
6
2
)
×
.
.
.
×
(
(
2
n
−
3
)
×
(
2
n
−
1
)
(
2
n
−
2
)
2
)
×
(
(
2
n
−
1
)
×
(
2
n
+
1
)
(
2
n
)
2
)
<
1
{\displaystyle \left({\frac {1\times 3}{2^{2}}}\right)\times \left({\frac {3\times 5}{4^{2}}}\right)\times \left({\frac {5\times 7}{6^{2}}}\right)\times ...\times \left({\frac {\left(2n-3\right)\times \left(2n-1\right)}{{\left(2n-2\right)}^{2}}}\right)\times \left({\frac {\left(2n-1\right)\times \left(2n+1\right)}{{\left(2n\right)}^{2}}}\right){<1}}
lè nou diseke nimeratè yo ak denominatè yo :
(
1
2
×
3
4
×
5
6
×
.
.
.
×
2
n
−
3
2
n
−
2
×
2
n
−
1
2
n
)
×
(
3
2
×
5
4
×
7
6
×
.
.
.
×
2
n
−
1
2
n
−
2
×
2
n
+
1
2
n
)
<
1
{\displaystyle \left({\frac {1}{2}}\times {\frac {3}{4}}\times {\frac {5}{6}}\times ...\times {\frac {2n-3}{2n-2}}\times {\frac {2n-1}{2n}}\right)\times \left({\frac {3}{2}}\times {\frac {5}{4}}\times {\frac {7}{6}}\times ...\times {\frac {2n-1}{2n-2}}\times {\frac {2n+1}{2n}}\right){<1}}
1
×
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
×
3
×
5
×
.
.
.
×
(
2
n
−
1
)
×
(
2
n
+
1
)
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
<
1
{\displaystyle {\frac {1\times 3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}{2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n}}\times {\frac {3\times 5\times ...\times \left(2n-1\right)\times \left(2n+1\right)}{2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n}}{<1}}
1
×
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
×
1
×
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
×
(
2
n
+
1
)
<
1
{\displaystyle {\frac {1\times 3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}{2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n}}\times {\frac {1\times 3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}{2\times 4\times 6\times ...\times \left(2n-2\right)\times 2n}}\times \left(2n+1\right){<1}}
P
×
P
×
(
2
n
+
1
)
<
1
{\displaystyle P\times P\times \left(2n+1\right){<1}}
P
2
×
(
2
n
+
1
)
<
1
{\displaystyle P^{2}\times \left(2n+1\right){<1}}
P
2
×
2
n
<
P
2
×
(
2
n
+
1
)
<
1
{\displaystyle P^{2}\times 2n{<}P^{2}\times \left(2n+1\right){<1}}
kidonk
P
2
×
2
n
<
1
{\displaystyle {P^{2}\times 2n}{<}1}
Nou te wè ke
2
2
n
P
=
N
{\displaystyle 2^{2n}P=N}
(
2
2
n
)
2
P
2
=
N
2
{\displaystyle {\left(2^{2n}\right)}^{2}P^{2}=N^{2}}
(
2
2
n
)
2
P
2
×
2
n
<
(
2
2
n
)
2
{\displaystyle {\left(2^{2n}\right)}^{2}P^{2}\times 2n{<}{\left(2^{2n}\right)}^{2}}
N
2
×
2
n
<
(
2
2
n
)
2
{\displaystyle N^{2}\times {2n}<{\left(2^{2n}\right)}^{2}}
N
2
<
(
2
2
n
)
2
2
n
{\displaystyle N^{2}<{\frac {{\left(2^{2n}\right)}^{2}}{2n}}}
Fonksyon rasin kare kwasan, nou genyen :
N
<
(
2
2
n
)
2
2
n
{\displaystyle N{<}{\sqrt {\frac {{\left(2^{2n}\right)}^{2}}{2n}}}}
N
<
2
2
n
2
n
{\displaystyle N<{\frac {2^{2n}}{\sqrt {2n}}}}
Inegalite dwat la demontre
li pa fè answa apèl a oken nosyon nonm premye jiska prezan sinon ke faktoryèl la se nosyon de predileksyon nonm premye
Kounye an nou redemontre dezyèm pati inegalite, inegalite gòch la.
An nou konsidere pwodui sa :
∏
i
=
2
n
(
1
−
1
(
2
i
−
1
)
2
)
{\displaystyle \prod _{i=2}^{n}{\left(1-{\frac {1}{{\left(2i-1\right)}^{2}}}\right)}}
chak faktè yo pozitif e enferyè ak 1, kidonk pwodui ya globalman enferyè ak 1.
∏
i
=
2
n
(
1
−
1
(
2
i
−
1
)
2
)
<
1
{\displaystyle \prod _{i=2}^{n}{\left(1-{\frac {1}{{\left(2i-1\right)}^{2}}}\right)}{<1}}
∏
i
=
2
n
(
(
2
i
−
1
)
2
−
1
(
2
i
−
1
)
2
)
<
1
{\displaystyle \prod _{i=2}^{n}{\left({\frac {{\left(2i-1\right)}^{2}-1}{{\left(2i-1\right)}^{2}}}\right)}{<1}}
∏
i
=
2
n
(
(
2
i
−
1
−
1
)
(
2
i
−
1
+
1
)
(
2
i
−
1
)
2
)
<
1
{\displaystyle \prod _{i=2}^{n}{\left({\frac {\left(2i-1-1\right)\left(2i-1+1\right)}{{\left(2i-1\right)}^{2}}}\right)}{<1}}
∏
i
=
2
n
(
(
2
i
−
2
)
×
2
i
(
2
i
−
1
)
2
)
<
1
{\displaystyle \prod _{i=2}^{n}{\left({\frac {\left(2i-2\right)\times 2i}{{\left(2i-1\right)}^{2}}}\right)}<1}
∏
i
=
2
n
(
2
i
−
2
2
i
−
1
)
×
∏
i
=
2
n
(
2
i
2
i
−
1
)
<
1
{\displaystyle {\prod _{i=2}^{n}{\left({\frac {2i-2}{2i-1}}\right)}}\times {\prod _{i=2}^{n}{\left({\frac {2i}{2i-1}}\right)}}{<1}}
sa ki bay
(
2
3
×
4
5
×
.
.
.
×
2
n
−
4
2
n
−
3
×
2
n
−
2
2
n
−
1
)
×
(
4
3
×
6
5
×
.
.
.
×
2
n
−
2
2
n
−
3
×
2
n
2
n
−
1
)
<
1
{\displaystyle \left({\frac {2}{3}}\times {\frac {4}{5}}\times ...\times {\frac {2n-4}{2n-3}}\times {\frac {2n-2}{2n-1}}\right)\times \left({\frac {4}{3}}\times {\frac {6}{5}}\times ...\times {\frac {2n-2}{2n-3}}\times {\frac {2n}{2n-1}}\right)<1}
2
×
4
×
.
.
.
×
(
2
n
−
4
)
×
(
2
n
−
2
)
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
<
1
{\displaystyle {\frac {2\times 4\times ...\times \left(2n-4\right)\times \left(2n-2\right)}{3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}}\times {\frac {4\times 6\times ...\times \left(2n-2\right)\times 2n}{3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}}{<1}}
2
×
4
×
.
.
.
×
(
2
n
−
4
)
×
(
2
n
−
2
)
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
×
2
n
×
2
×
4
×
6
×
.
.
.
×
(
2
n
−
2
)
×
2
n
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
<
2
×
2
n
{\displaystyle {\frac {2\times 4\times ...\times \left(2n-4\right)\times \left(2n-2\right)}{3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}}\times 2n\times 2\times {\frac {4\times 6\times ...\times \left(2n-2\right)\times 2n}{3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}}{<2\times 2n}}
2
×
4
×
.
.
.
×
(
2
n
−
2
)
×
2
n
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
×
2
×
4
×
.
.
.
×
(
2
n
−
2
)
×
2
n
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
<
4
n
{\displaystyle {\frac {2\times 4\times ...\times \left(2n-2\right)\times 2n}{3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}}\times {\frac {2\times 4\times ...\times \left(2n-2\right)\times 2n}{3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}}{<4n}}
(
2
×
4
×
.
.
.
×
(
2
n
−
2
)
×
2
n
1
×
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
)
2
<
4
n
{\displaystyle \left({\frac {2\times 4\times ...\times \left(2n-2\right)\times 2n}{1\times 3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}}\right)^{2}{<4n}}
(
1
1
×
3
×
5
×
.
.
.
×
(
2
n
−
3
)
×
(
2
n
−
1
)
2
×
4
×
.
.
.
×
(
2
n
−
2
)
×
2
n
)
2
<
4
n
{\displaystyle {\left({\frac {1}{\frac {1\times 3\times 5\times ...\times \left(2n-3\right)\times \left(2n-1\right)}{2\times 4\times ...\times \left(2n-2\right)\times 2n}}}\right)}^{2}{<4n}}
(
1
P
)
2
<
4
n
{\displaystyle {\left({\frac {1}{P}}\right)}^{2}{<4n}}
1
P
2
<
4
n
{\displaystyle {\frac {1}{P^{2}}}{<4n}}
1
1
P
2
>
1
4
n
{\displaystyle {\frac {1}{\frac {1}{P^{2}}}}{>}{\frac {1}{4n}}}
p
2
>
1
4
n
{\displaystyle p^{2}>{\frac {1}{4n}}}
nou genyen
2
2
n
×
P
=
N
{\displaystyle {2^{2n}\times P}=N}
P
=
N
2
2
n
{\displaystyle P={\frac {N}{2^{2n}}}}
(
N
2
2
n
)
2
>
1
4
n
{\displaystyle {\left({\frac {N}{2^{2n}}}\right)}^{2}{>}{\frac {1}{4n}}}
(
N
2
2
n
)
>
1
4
n
{\displaystyle \left({\frac {N}{2^{2n}}}\right){>}{\sqrt {\frac {1}{4n}}}}
(
N
2
2
n
)
>
1
4
n
{\displaystyle \left({\frac {N}{2^{2n}}}\right){>}{\frac {1}{\sqrt {4n}}}}
(
N
2
2
n
)
>
1
2
n
{\displaystyle \left({\frac {N}{2^{2n}}}\right){>}{\frac {1}{2{\sqrt {n}}}}}
(
N
2
2
n
)
×
2
2
n
>
1
2
n
×
2
2
n
{\displaystyle {\left({\frac {N}{2^{2n}}}\right)}\times {2^{2n}}{>}{\frac {1}{2{\sqrt {n}}}}\times {2^{2n}}}
N
>
2
2
n
2
n
{\displaystyle N{>}{\frac {2^{2n}}{2{\sqrt {n}}}}}
2
2
n
2
n
<
N
{\displaystyle {\frac {2^{2n}}{2{\sqrt {n}}}}{<}N}
Inegalite goch la demontre
kidonk lè nou konbine inegalite goch la ak inegalite dwat la nou gen premye lèm
2
2
n
2
n
<
N
<
2
2
n
2
n
{\displaystyle {\frac {2^{2n}}{2{\sqrt {n}}}}<N<{\frac {2^{2n}}{\sqrt {2n}}}}
An nou demontre yon dezyèm pwopozisyon sa ki va sèvi kòm lèm
θ
(
n
)
<
2
n
L
n
2
{\displaystyle \theta \left(n\right){<}2nLn2}
An soulye ke fonksyon
θ
{\displaystyle \theta }
Tchebychèf la defini konsa
θ
(
x
)
=
∑
p
≤
x
L
n
p
{\displaystyle \theta \left(x\right)=\sum _{p\leq x}^{}{Lnp}}
avèk
x
≤
0
{\displaystyle x\leq 0}
...
Nan kad sa a nou sipoze ke n
∈
N
∗
{\displaystyle \in \mathbb {N} ^{*}}
θ
(
1
)
=
0
<
2
×
1
×
L
n
2
{\displaystyle \theta \left(1\right)=0<2\times 1\times Ln2}
θ
(
2
)
=
L
n
2
<
2
×
2
×
L
n
2
{\displaystyle \theta \left(2\right)=Ln2{<}2\times 2\times Ln2}
Inegalite a verifye pou n = 1 ak n = 2 .
An nou sipoze li vrè pou yon sèten
n
>
2
{\displaystyle n>2}
kounye a an nou konsidere
N
2
{\displaystyle {\frac {N}{2}}}
N
2
=
1
2
N
=
1
2
(
2
n
n
)
=
(
2
n
)
!
2
×
(
n
!
)
×
n
!
=
(
(
2
n
−
1
)
!
)
×
2
n
2
×
(
n
!
)
×
n
!
=
(
(
2
n
−
1
)
!
)
×
n
(
n
!
)
×
(
(
n
−
1
)
!
)
×
n
=
(
2
n
−
1
)
!
(
(
n
−
1
)
!
)
×
n
!
=
(
2
n
−
1
)
(
(
n
−
1
)
!
)
×
(
(
2
n
−
1
)
−
(
n
−
1
)
)
!
=
C
2
n
−
1
n
−
1
=
(
2
n
−
1
n
−
1
)
{\displaystyle {\frac {N}{2}}={\frac {1}{2}}N={\frac {1}{2}}{{2n} \choose n}={\frac {\left(2n\right)!}{2\times {\left(n!\right)}\times {n!}}}={\frac {\left(\left(2n-1\right)!\right)\times 2n}{2\times \left(n!\right)\times n!}}={\frac {\left(\left(2n-1\right)!\right)\times n}{\left(n!\right)\times {\left(\left(n-1\right)!\right)}\times n}}={\frac {\left(2n-1\right)!}{\left(\left(n-1\right)!\right)\times n!}}={\frac {\left(2n-1\right)}{\left(\left(n-1\right)!\right)\times \left(\left(2n-1\right)-\left(n-1\right)\right)!}}=C_{2n-1}^{n-1}={{2n-1} \choose {n-1}}}
pou tou n siperyè ak 1, ekspresyon sa gen yon reyalite konkrè e se yon antye : se pa egzanp kantite souzansanm de n-1 eleman diferan ke nou ka
fòme a pati de yon ansanm de 2n-1 eleman.
An nou gade byen nimeratè a ak denominatè a
(
2
n
−
1
)
!
(
n
!
)
×
(
(
n
−
1
)
!
)
=
1
×
2
×
3
×
.
.
.
×
(
2
n
−
2
)
×
(
2
n
−
1
)
(
1
×
2
×
3
×
.
.
.
×
(
n
−
1
)
×
n
)
×
(
1
×
2
×
3
×
.
.
.
×
(
n
−
2
)
×
(
n
−
1
)
)
{\displaystyle {\frac {\left(2n-1\right)!}{\left(n!\right)\times \left(\left(n-1\right)!\right)}}={\frac {1\times 2\times 3\times ...\times \left(2n-2\right)\times \left(2n-1\right)}{\left(1\times 2\times 3\times ...\times {\left(n-1\right)}\times n\right)\times {\left(1\times 2\times 3\times ...\times \left(n-2\right)\times \left(n-1\right)\right)}}}}
Tout nonm antye non nil ki enferyè ak 2n-1 se yon divizè de nimeratè a , an patikilye tout nonm premye ki enferyè ou egal ak 2n-1 se yon divizè nimeratè a .
Menm konsiderasyon an ka fèt pou denominatè a jiska n .
An nou konsidere nonm premye p ki siperyè ak n e ki enferyè oubyen egal ak 2n-1.
n
<
p
≤
2
n
−
1
{\displaystyle n{<p}\leq {2n-1}}
p
∤
(
(
n
!
)
×
(
(
n
−
1
)
!
)
)
{\displaystyle p\nmid {\left(\left(n!\right)\times \left(\left(n-1\right)!\right)\right)}}
p
∣
(
2
n
−
1
)
!
{\displaystyle p\mid \left(2n-1\right)!}
kidonk yon faktè premye p ki tèl ke
n
<
p
≤
2
n
−
1
{\displaystyle n<p\leq {2n-1}}
pa senplifye.
N
2
{\displaystyle {\frac {N}{2}}}
se donk miltipl non nil chak nonm premye tèl ke
n
<
p
≤
2
n
−
1
{\displaystyle n<p\leq {2n-1}}
.
Se donk yon miltipl non nil pwodui tout nonm premye sila yo.
N
2
{\displaystyle {\frac {N}{2}}}
siperyè oubyen egal ak pwodui nonm sa yo
N
2
≥
∏
n
<
p
≤
2
n
−
1
p
{\displaystyle {\frac {N}{2}}\geq {\prod _{n<p\leq {2n-1}}{p}}}
Fonksyon Ln lan kwasant, nou genyen
L
n
N
2
≥
L
n
∏
n
<
p
≤
2
n
−
1
p
{\displaystyle {Ln{\frac {N}{2}}}\geq {Ln{\prod _{n<p\leq {2n-1}}{p}}}}
tout fonksyon logaritm transforme pwodui an sòm logaritm
L
n
N
2
≥
∑
n
<
p
≤
2
n
−
1
L
n
p
{\displaystyle {Ln{\frac {N}{2}}}\geq {\sum _{n<p\leq {2n-1}}{Lnp}}}
L
n
N
2
≥
∑
1
≤
p
≤
n
L
n
p
−
∑
1
≤
p
≤
n
L
n
p
+
∑
n
<
p
≤
2
n
−
1
L
n
p
{\displaystyle {Ln{\frac {N}{2}}}\geq {\sum _{1\leq {p}\leq {n}}{Lnp}}-{\sum _{1\leq {p}\leq {n}}{Lnp}}+{\sum _{n{<p}\leq {2n-1}}{Lnp}}}
L
n
N
2
≥
(
∑
1
≤
p
≤
n
L
n
p
+
∑
n
<
p
≤
2
n
−
1
L
n
p
)
−
∑
1
≤
p
≤
n
L
n
p
{\displaystyle {Ln{\frac {N}{2}}}\geq \left({\sum _{1\leq {p}\leq {n}}{Lnp}}+{\sum _{n{<p}\leq {2n-1}}{Lnp}}\right)-{\sum _{1\leq {p}\leq {n}}{Lnp}}}
L
n
N
2
≥
∑
1
≤
p
≤
2
n
−
1
L
n
p
−
∑
1
≤
p
≤
n
L
n
p
{\displaystyle {Ln{\frac {N}{2}}}\geq {\sum _{1\leq {p}\leq {2n-1}}{Lnp}}-{\sum _{1\leq {p}\leq {n}}{Lnp}}}
L
n
N
2
≥
θ
(
2
n
−
1
)
−
θ
(
n
)
{\displaystyle {Ln{\frac {N}{2}}}\geq \theta \left(2n-1\right)-\theta \left(n\right)}
θ
(
2
n
−
1
)
−
θ
(
n
)
≤
L
n
N
2
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right)\leq {Ln{\frac {N}{2}}}}
An nou konsidere inegalite dwat premye lèn lan oubyen dezyèm inegalite premye lèm lan
N
<
2
2
n
2
n
{\displaystyle {N}{<}{\frac {2^{2n}}{\sqrt {2n}}}}
nou kapab ekri li
N
<
2
2
n
(
2
n
)
1
2
{\displaystyle {N}<{\frac {2^{2n}}{{\left(2n\right)}^{\frac {1}{2}}}}}
An nou pran logaritm Neperyen de manm yon.
Kòm se yon fonksyon kwasant, nap genyen
L
n
N
<
2
2
n
(
2
n
)
1
2
{\displaystyle LnN<{\frac {2^{2n}}{{\left(2n\right)}^{\frac {1}{2}}}}}
L
n
N
<
L
n
2
2
n
−
L
n
(
2
n
)
1
2
{\displaystyle LnN<{Ln2^{2n}}-Ln{\left(2n\right)}^{\frac {1}{2}}}
L
n
N
<
2
n
L
n
2
−
1
2
L
n
2
n
{\displaystyle LnN{<}2nLn2-{\frac {1}{2}}Ln2n}
An nou konbine
{
θ
(
2
n
−
1
)
−
θ
(
n
)
≤
L
n
N
2
L
n
N
<
2
n
L
n
2
−
1
2
L
n
2
n
{\displaystyle \{_{\theta \left(2n-1\right)-\theta \left(n\right)\leq Ln{\frac {N}{2}}}^{LnN<2nLn2-{\frac {1}{2}}Ln{2n}}}
θ
(
2
n
−
1
)
−
θ
(
n
)
+
L
n
N
<
L
n
N
2
+
2
n
L
n
N
−
1
2
L
n
2
n
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right)+LnN{<}{Ln{\frac {N}{2}}+2nLnN-{\frac {1}{2}}Ln{2n}}}
θ
(
2
n
−
1
)
−
θ
(
n
)
<
L
n
N
2
−
L
n
N
+
2
n
L
n
2
−
1
2
L
n
2
n
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right)<Ln{\frac {N}{2}}-LnN+2nLn2-{\frac {1}{2}}Ln{2n}}
θ
(
2
n
−
1
)
−
θ
(
n
)
<
L
n
N
2
N
+
2
n
L
o
g
2
−
1
2
L
n
2
n
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right){<}Ln{\frac {\frac {N}{2}}{N}}+2nLog2-{\frac {1}{2}}Ln{2n}}
θ
(
2
n
−
1
)
−
θ
(
n
)
<
L
n
1
2
+
2
n
L
n
2
−
1
2
L
n
2
n
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right)<Ln{\frac {1}{2}}+2nLn2-{\frac {1}{2}}Ln{2n}}
θ
(
2
n
−
1
)
−
θ
(
n
)
<
−
L
n
2
+
2
n
L
n
2
−
1
2
L
n
2
n
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right)<-Ln2+2nLn2-{\frac {1}{2}}Ln{2n}}
θ
(
2
n
−
1
)
−
θ
(
n
)
<
(
2
n
−
1
)
L
n
2
−
1
2
L
n
2
n
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right)<\left(2n-1\right)Ln2-{\frac {1}{2}}Ln{2n}}
An nou pa bliye ke nou vle demontre kòm dezyèm lèm
θ
(
n
)
<
2
n
L
n
2
{\displaystyle \theta \left(n\right){<}2nLn2}
An nou konsidere kòm Ipotèz e an montre ke li vre pou 2n - 1 ak 2n pou tout n > 2
θ
(
2
n
−
1
)
−
θ
(
n
)
+
θ
(
n
)
<
(
2
n
−
1
)
L
n
2
−
1
2
L
n
2
n
+
2
n
L
n
2
{\displaystyle \theta \left(2n-1\right)-\theta \left(n\right)+\theta \left(n\right){<}\left(2n-1\right)Ln2-{\frac {1}{2}}Ln2n+2nLn2}
θ
(
2
n
−
1
)
<
(
4
n
−
1
)
L
n
2
−
1
2
L
n
2
n
{\displaystyle \theta \left(2n-1\right){<}\left(4n-1\right)Ln2-{\frac {1}{2}}Ln2n}
....
kòm
n
>
2
{\displaystyle n>2}
2
n
>
2
×
2
{\displaystyle 2n{>}{2\times 2}}
2
n
>
2
2
{\displaystyle 2n{>}{2^{2}}}
L
n
2
n
>
L
n
2
2
{\displaystyle Ln2n{>}{Ln{2^{2}}}}
L
n
2
n
>
2
L
n
2
{\displaystyle Ln2n{>}2Ln2}
1
2
L
n
2
n
>
L
n
2
{\displaystyle {\frac {1}{2}}Ln2n{>}Ln2}
−
1
2
L
n
2
n
<
−
L
n
2
{\displaystyle -{\frac {1}{2}}Ln2n{<}-Ln2}
(
4
n
−
1
)
L
n
2
−
1
2
L
n
2
n
<
(
4
n
−
1
)
L
n
2
−
L
n
2
{\displaystyle \left(4n-1\right)Ln2-{\frac {1}{2}}Ln2n{<}\left(4n-1\right)Ln2-Ln2}
(
4
n
−
1
)
L
n
2
−
1
2
L
n
2
n
<
(
4
n
−
2
)
L
n
2
{\displaystyle \left(4n-1\right)Ln2-{\frac {1}{2}}Ln2n{<}\left(4n-2\right)Ln2}
(
4
n
−
1
)
L
n
2
−
1
2
L
n
2
n
<
2
(
2
n
−
1
)
L
n
2
{\displaystyle \left(4n-1\right)Ln2-{\frac {1}{2}}Ln2n{<}2\left(2n-1\right)Ln2}
θ
(
2
n
−
1
)
<
(
4
n
−
1
)
L
n
2
−
1
2
L
n
2
n
<
2
(
2
n
−
1
)
L
n
2
{\displaystyle \theta \left(2n-1\right){<}\left(4n-1\right)Ln2-{\frac {1}{2}}Ln2n<2\left(2n-1\right)Ln2}
θ
(
2
n
−
1
)
<
2
(
2
n
−
1
)
L
n
2
{\displaystyle {\theta \left(2n-1\right)}<{2\left(2n-1\right)Ln2}}
si nou gen
n
≥
2
{\displaystyle n\geq 2}
alò
2
n
≥
4
{\displaystyle 2n\geq 4}
2
n
≠
2
{\displaystyle 2n\neq 2}
2
n
∉
P
{\displaystyle 2n\notin \mathbb {P} }
{
n
∈
N
n
≥
2
⇒
2
n
∉
P
⇔
∄
p
∈
P
/
2
n
−
1
<
p
≤
2
n
{\displaystyle {\{_{n\in \mathbb {N} }^{n\geq 2}}\Rightarrow {2n\notin \mathbb {P} }\Leftrightarrow \not \exists p\in \mathbb {P} {/}2n-1{<}p\leq 2n}
θ
(
2
n
)
=
∑
1
≤
p
≤
2
n
L
n
p
=
∑
1
≤
p
≤
2
n
−
1
L
n
p
+
∑
2
n
−
1
≤
p
≤
2
n
L
n
p
=
∑
1
≤
p
≤
2
n
−
1
L
n
p
+
0
=
∑
1
≤
p
≤
2
n
−
1
L
n
p
=
θ
(
2
n
)
{\displaystyle \theta \left(2n\right)=\sum _{1\leq p\leq 2n}Lnp=\sum _{1\leq p\leq 2n-1}Lnp+\sum _{2n-1\leq p\leq 2n}Lnp=\sum _{1\leq p\leq 2n-1}{Lnp}+0=\sum _{1\leq p\leq 2n-1}{Lnp}=\theta \left(2n\right)}
kidonk
n
≥
2
⇒
θ
(
2
n
−
1
)
=
θ
(
2
n
)
{\displaystyle n\geq 2\Rightarrow \theta \left(2n-1\right)=\theta \left(2n\right)}
pou tout
n
≥
2
{\displaystyle n\geq 2}
si lèm lan vre pou n li vre pou 2n - 1
an nou pwouve rapidman ke inegalite vre pou 2n tou.
θ
(
2
n
−
1
)
<
2
(
2
n
−
1
)
L
n
2
{\displaystyle \theta \left(2n-1\right){<}2\left(2n-1\right)Ln2}
θ
(
2
n
)
<
2
(
2
n
−
1
)
L
n
2
{\displaystyle \theta \left(2n\right){<}2\left(2n-1\right)Ln2}
θ
(
2
n
)
<
4
n
L
n
2
−
2
L
n
2
{\displaystyle \theta \left(2n\right){<}4nLn2-2Ln2}
θ
(
2
n
)
<
4
n
L
n
2
−
2
L
n
2
<
4
n
L
n
2
{\displaystyle \theta \left(2n\right){<}4nLn2-2Ln2{<}4nLn2}
θ
(
2
n
)
<
4
n
L
n
2
{\displaystyle \theta \left(2n\right){<}4nLn2}
θ
(
2
n
)
<
2
×
2
n
L
n
2
{\displaystyle \theta \left(2n\right)<2\times 2nLn2}
si inegalite a vre pou
n
≥
2
{\displaystyle n\geq 2}
li vre alafwa pou 2n - 1 ak 2n .
An nou montre kounye a si fòmil la vrè pou entèval
]
2
r
−
1
,
2
r
]
{\displaystyle ]{2^{r-1}},2^{r}]}
alò li vrè pou entèval
]
2
r
,
2
r
+
1
]
{\displaystyle ]2^{r},2^{r+1}]}
Avan nou montre sa an nou verifye ke ingalite a vrè pou entèval
]
2
,
4
]
{\displaystyle ]2,4]}
Inegalite a vrè pou n = 2 selon enplikasyon avan an li vrè pou
2
×
2
−
1
e
t
p
o
u
2
×
2
{\displaystyle 2\times 2-1etpou2\times 2}
ki donk li vre e pou 3 e pou 4.
Pwopriyete a vrè pou
[
2
,
4
]
{\displaystyle [2,4]}
oubyen ankò li vrè pou
]
2
,
4
]
{\displaystyle ]2,4]}
Pwopriyete a vrè pou
]
2
1
,
2
2
]
{\displaystyle ]2^{1},2^{2}]}
Ipotèz rekirans
An nou konsidere ke inegalite sou tout entèval
]
2
r
−
1
,
2
r
]
{\displaystyle ]2^{r-1},2^{r}]}
la e an nou montre ke li vrè pou tout entèval
]
2
r
,
2
r
+
1
]
{\displaystyle ]2^{r},2^{r+1}]}
la tou .
An nou pran yon antye m kèlkon sou entèval
]
2
r
,
2
r
+
1
]
{\displaystyle ]2^{r},2^{r+1}]}
sa vle di
m
∈
]
2
r
,
2
r
+
1
]
{\displaystyle m\in ]2^{r},2^{r+1}]}
m
∈
]
2
r
,
2
r
+
1
]
⇔
2
r
<
m
≤
2
r
+
1
{\displaystyle m\in ]2^{r},2^{r+1}]\Leftrightarrow {2^{r}<m\leq {2^{r+1}}}}
Nan de bagay ki ekskli yo youn lòt, nou gen youn fòseman.
m se yon nonm pè ou m se yon nonm enpè
1)
m pè
⇔
∃
n
∈
N
/
m
=
2
n
{\displaystyle \Leftrightarrow \exists n\in \mathbb {N} {/}m=2n}
{
m
=
2
n
2
r
<
m
≤
2
r
+
1
⇒
2
r
<
2
n
≤
2
r
+
1
⇒
2
×
2
r
−
1
<
2
n
≤
2
×
2
r
⇒
2
r
−
1
<
n
≤
2
r
⇒
n
∈
]
2
r
−
1
,
2
r
]
{\displaystyle \{_{m={2n}}^{2^{r}{<}m\leq {2^{r+1}}}\Rightarrow {2^{r}{<}{2n}\leq {2^{r+1}}}\Rightarrow {2\times {2^{r-1}}{<}{2n}\leq {2\times 2^{r}}}\Rightarrow {2^{r-1}{<}n\leq {2^{r}}}\Rightarrow n\in ]2^{r-1},2^{r}]}
ò pa ipotèz rekirans, inegalite a vrè pou tout n ki nan entèval presedan an. Inegalite a vrè pou
θ
(
n
)
{\displaystyle \theta \left(n\right)}
Kidonk selon premyè dediksyon an li vrè pou
θ
(
2
n
)
{\displaystyle \theta \left(2n\right)}
. Li vre donk pou tout m pè ki nan entèval
]
2
r
,
2
r
+
1
]
{\displaystyle ]{2^{r}},{2^{r+1}}]}
2)
m enpè
⇔
∃
n
∈
N
/
m
=
2
n
−
1
{\displaystyle \Leftrightarrow \exists n\in \mathbb {N} {/}m={2n-1}}
{
m
=
2
n
−
1
2
r
<
m
≤
2
r
+
1
⇒
2
r
<
2
n
−
1
≤
2
r
+
1
⇒
2
r
+
1
<
2
n
≤
2
r
+
1
+
1
⇒
{
2
r
<
2
n
<
2
r
+
1
+
1
2
n
≠
2
r
+
1
+
1
⇒
2
r
<
2
n
≤
2
r
+
1
⇒
2
r
2
<
n
≤
2
r
+
1
2
⇒
2
r
−
1
<
n
≤
2
r
⇒
n
∈
]
2
r
−
1
,
2
r
]
{\displaystyle \{_{m={2n-1}}^{2^{r}{<}m\leq {2^{r+1}}}\Rightarrow {2^{r}{<}{2n-1}\leq {2^{r+1}}}\Rightarrow {{2^{r}+1}<{2n}\leq {2^{r+1}+1}}\Rightarrow {\{_{2^{r}<{2n}<2^{r+1}+1}^{{2n}\neq 2^{r+1}+1}}\Rightarrow {2^{r}{<}{2n}\leq {2^{r+1}}}\Rightarrow {\frac {2^{r}}{2}}{<}n\leq {\frac {2^{r+1}}{2}}\Rightarrow {2^{r-1}{<}n\leq {2^{r}}}\Rightarrow n\in ]2^{r-1},2^{r}]}
selon ipotèz rekirans
θ
(
n
)
<
2
n
L
n
2
{\displaystyle \theta \left(n\right){<}{2n}Ln2}
inegalite a vrè pou tout n ki nan entèval presedan an. Inegalite a vrè pou
θ
(
n
)
{\displaystyle \theta \left(n\right)}
Kidonk selon premyè dediksyon an li vrè pou
θ
(
2
n
−
1
)
{\displaystyle \theta \left(2n-1\right)}
. Li vrè donk pou tout m enpè ki nan entèval
]
2
r
,
2
r
+
1
]
{\displaystyle ]{2^{r}},{2^{r+1}}]}
An fendkont pwopriyete a vrè pou tout
n
≥
2
{\displaystyle {n}\geq {2}}
∀
n
≥
2
,
θ
(
n
)
<
2
n
L
n
2
{\displaystyle \forall n\geq 2,\theta \left(n\right){<}{2n}Ln2}
Si nou gen yon nonm premye fiks, pi gwo ekspozan k tèl ke
p
k
∣
n
!
{\displaystyle {p^{k}}\mid n!}
alò
k
=
∑
i
=
1
∞
[
n
p
i
]
{\displaystyle k=\sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}
p
k
‖
n
!
{\displaystyle p^{k}\|{n!}}
An nou demontre sa pa rekirans
fòmil la vrè pou
n
=
1
{\displaystyle n=1}
∑
i
=
1
∞
[
1
p
i
]
=
0
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {1}{p^{i}}}\right]}}=0}
p
i
>
1
{\displaystyle p^{i}>1}
1
p
i
<
1
{\displaystyle {\frac {1}{p^{i}}}<1}
an sipoze fòmil la bon pou
n
{\displaystyle n}
epi an nou montre li bon pou
n
+
1
{\displaystyle n+1}
swa
p
α
‖
n
+
1
{\displaystyle p^{\alpha }\|{n+1}}
∑
i
=
1
∞
[
n
+
1
p
i
]
=
∑
i
=
1
α
[
n
+
1
p
i
]
+
∑
i
=
α
+
1
∞
[
n
+
1
p
i
]
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}={\sum _{i=1}^{\alpha }{\left[{\frac {n+1}{p^{i}}}\right]}+\sum _{i=\alpha +1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}}
∑
i
=
1
∞
[
n
+
1
p
i
]
=
∑
i
=
1
α
(
[
n
p
i
]
+
1
)
+
∑
i
=
α
+
1
∞
[
n
p
i
]
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}={\sum _{i=1}^{\alpha }{\left(\left[{\frac {n}{p^{i}}}\right]+1\right)}+\sum _{i=\alpha +1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}}
∑
i
=
1
∞
[
n
+
1
p
i
]
=
∑
i
=
1
α
[
n
p
i
]
+
∑
i
=
1
α
1
+
∑
i
=
α
+
1
∞
[
n
p
i
]
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}={\sum _{i=1}^{\alpha }{\left[{\frac {n}{p^{i}}}\right]}+\sum _{i=1}^{\alpha }{1}+\sum _{i=\alpha +1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}}
∑
i
=
1
∞
[
n
+
1
p
i
]
=
∑
i
=
1
α
[
n
p
i
]
+
α
+
∑
i
=
α
+
1
∞
[
n
p
i
]
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}={\sum _{i=1}^{\alpha }{\left[{\frac {n}{p^{i}}}\right]}+\alpha +\sum _{i=\alpha +1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}}
∑
i
=
1
∞
[
n
+
1
p
i
]
=
∑
i
=
1
α
[
n
p
i
]
+
∑
i
=
α
+
1
∞
[
n
p
i
]
+
α
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}={\sum _{i=1}^{\alpha }{\left[{\frac {n}{p^{i}}}\right]}+\sum _{i=\alpha +1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}+\alpha }}
∑
i
=
1
∞
[
n
+
1
p
i
]
=
∑
i
=
1
∞
[
n
p
i
]
+
α
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}={\sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}+{\alpha }}
∑
i
=
1
∞
[
n
+
1
p
i
]
=
α
+
k
{\displaystyle {\sum _{i=1}^{\infty }{\left[{\frac {n+1}{p^{i}}}\right]}}={\alpha +k}}
selon ipotèz rekirans lan
ò
(
n
+
1
)
!
=
(
n
+
1
)
×
n
!
{\displaystyle {\left(n+1\right)!}={\left(n+1\right)\times {n!}}}
p
k
‖
n
!
{\displaystyle {p^{k}}\|{n!}}
ak
p
α
‖
n
+
1
{\displaystyle {p^{\alpha }}\|{n+1}}
enplike
p
α
×
p
k
‖
(
n
+
1
)
×
n
!
{\displaystyle {{p^{\alpha }}\times {p^{k}}}\|{{\left(n+1\right)}\times {n!}}}
Sa ki enplike
p
α
+
k
‖
(
n
+
1
)
!
{\displaystyle {p^{\alpha +k}}\|{{\left(n+1\right)}!}}
kidonk si fòmil la vrè pou
n
{\displaystyle n}
li vrè pou
n
+
1
{\displaystyle n+1}
kidonk li vrè pou tout antye n ki pa egal ak zero.
Premyè demonstrasyon an answa
modifye
An nou montre an premye lye ke
θ
(
2
n
)
−
θ
(
n
)
>
0
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)>0}
pou chak
n
>
2
6
{\displaystyle n>2^{6}}
sa ki va pwouve ekzistans de yon nonm premye pou pi piti nan entèval
]
n
,
2
n
[
{\displaystyle ]{n},{2n}[}
pou chak
n
>
2
6
{\displaystyle n>{2^{6}}}
An nou konsidere yon lòt fwa nonm
N
=
(
2
n
n
)
{\displaystyle N={\dbinom {2n}{n}}}
N
=
(
2
n
n
)
=
(
2
n
)
!
n
!
×
(
2
n
−
n
)
!
=
(
2
n
)
!
(
n
!
)
2
{\displaystyle N={\dbinom {2n}{n}}={\frac {{\left(2n\right)}!}{{n!}\times \left(2n-n\right)!}}={\frac {{\left(2n\right)}!}{{\left(n!\right)}^{2}}}}
Oken nonm premye ki siperyè ak 2n pa yon divizè de N .
Tandiske tout nonm premye ki konpri ant n ekstrikteman ak 2n lajman divize N yon sèl fwa.
An nou konsidere n ak 2n pou nou wè kisa ki rive.
N
=
(
2
n
)
!
(
n
!
)
×
(
n
!
)
{\displaystyle N={\frac {\left(2n\right)!}{\left(n!\right)\times \left(n!\right)}}}
si n premye, li parèt de fwa anlè a sou fòm n ak
2
×
n
{\displaystyle 2\times n}
menm jan an li parèt 2 fwa anba a sèlman. Kidonk, n pa yon faktè de N.
Pou 2n , si
n
>
1
{\displaystyle n>1}
2n pa yon nonm premye.
Nan entèval
]
n
,
2
n
[
{\displaystyle ]n,2n[}
oubyen ankò
]
2
,
2
n
]
{\displaystyle ]2,2n]}
tout nonm premye se divizè N yon sèl fwa, paske nonm premye sa a prezante yon sèl fwa nan nimeratè a e li pa prezante nan denominatè a,
De tout fason nou ap gen pou nou retounen sou konsiderasyon sa a.
Si nou konsidere teyorèm Legendre lan nou kapab ekri :
N
=
2
n
!
n
!
×
(
n
!
)
=
∏
p
≤
2
n
(
p
∑
i
=
1
∞
[
2
n
p
i
]
)
∏
p
≤
n
(
p
2
×
∑
i
=
1
∞
[
n
p
i
]
)
{\displaystyle N={\frac {{2n}!}{{n!}\times \left(n!\right)}}={\frac {\prod _{p\leq {2n}}{\left(p^{\sum _{i=1}^{\infty }{\left[{\frac {2n}{p^{i}}}\right]}}\right)}}{\prod _{p\leq n}{\left(p^{2\times \sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}\right)}}}}
An nou konsidere
∏
n
<
p
≤
2
n
p
2
×
∑
i
=
1
∞
(
[
n
p
i
]
)
{\displaystyle \prod _{n<p\leq {2n}}{p^{2\times \sum _{i=1}^{\infty }{\left(\left[{\frac {n}{p^{i}}}\right]\right)}}}}
Pwodui sa vo 1 paske ekspozan toujou vo 0.
pou tout antye n > 1 , 2n pa premye kidon
∀
n
>
1
,
n
<
p
≤
2
n
⇒
n
<
p
<
2
n
⇒
1
2
n
<
1
p
<
1
n
⇒
n
2
n
<
n
p
<
n
n
⇒
1
2
<
n
p
<
1
⇒
[
n
p
]
=
0
{\displaystyle \forall n>1,{n<p\leq {2n}}\Rightarrow {n<p<{2n}}\Rightarrow {{\frac {1}{2n}}<{\frac {1}{p}}<{\frac {1}{n}}}\Rightarrow {{\frac {n}{2n}}<{\frac {n}{p}}<{\frac {n}{n}}}\Rightarrow {{\frac {1}{2}}<{\frac {n}{p}}<1}\Rightarrow {\left[{\frac {n}{p}}\right]=0}}
pou tout
i
≥
1
{\displaystyle i\geq 1}
n
p
i
<
n
p
{\displaystyle {\frac {n}{p^{i}}}<{\frac {n}{p}}}
kidonk
[
n
p
i
]
=
0
{\displaystyle \left[{\frac {n}{p^{i}}}\right]=0}
pou tout
i
≥
1
{\displaystyle i\geq 1}
∏
n
<
p
≤
2
n
p
2
×
∑
i
=
1
∞
(
[
n
p
i
]
)
=
∏
n
<
p
≤
2
n
p
2
×
0
=
1
{\displaystyle \prod _{n<p\leq {2n}}{p^{2\times \sum _{i=1}^{\infty }{\left(\left[{\frac {n}{p^{i}}}\right]\right)}}}=\prod _{n<p\leq {2n}}{p^{2\times 0}}=1}
Nou ka ekri
N
=
2
n
!
n
!
×
(
n
!
)
=
∏
p
≤
2
n
(
p
∑
i
=
1
∞
[
2
n
p
i
]
)
∏
p
≤
n
(
p
2
×
∑
i
=
1
∞
[
n
p
i
]
)
{\displaystyle N={\frac {{2n}!}{{n!}\times \left(n!\right)}}={\frac {\prod _{p\leq {2n}}{\left(p^{\sum _{i=1}^{\infty }{\left[{\frac {2n}{p^{i}}}\right]}}\right)}}{\prod _{p\leq n}{\left(p^{2\times \sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}\right)}}}}
N
=
2
n
!
n
!
×
(
n
!
)
=
∏
p
≤
2
n
(
p
∑
i
=
1
∞
[
2
n
p
i
]
)
∏
p
≤
n
(
p
2
×
∑
i
=
1
∞
[
n
p
i
]
)
×
∏
n
<
p
≤
2
n
(
p
2
×
∑
i
=
1
∞
[
n
p
i
]
)
{\displaystyle N={\frac {{2n}!}{{n!}\times \left(n!\right)}}={\frac {\prod _{p\leq {2n}}{\left(p^{\sum _{i=1}^{\infty }{\left[{\frac {2n}{p^{i}}}\right]}}\right)}}{{\prod _{p\leq n}{\left(p^{2\times \sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}\right)}}\times {\prod _{n<p\leq {2n}}{\left(p^{2\times \sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}\right)}}}}}
N
=
2
n
!
n
!
×
(
n
!
)
=
∏
p
≤
2
n
(
p
∑
i
=
1
∞
[
2
n
p
i
]
)
∏
p
≤
2
n
(
p
2
×
∑
i
=
1
∞
[
n
p
i
]
)
{\displaystyle N={\frac {{2n}!}{{n!}\times \left(n!\right)}}={\frac {\prod _{p\leq {2n}}{\left(p^{\sum _{i=1}^{\infty }{\left[{\frac {2n}{p^{i}}}\right]}}\right)}}{\prod _{p\leq {2n}}{\left(p^{2\times \sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}}\right)}}}}
N
=
2
n
!
n
!
×
(
n
!
)
=
∏
p
≤
2
n
(
p
(
∑
i
=
1
∞
[
2
n
p
i
]
−
2
∑
i
=
1
∞
[
n
p
i
]
)
)
{\displaystyle N={\frac {{2n}!}{{n!}\times \left(n!\right)}}=\prod _{p\leq {2n}}{\left(p^{\left(\sum _{i=1}^{\infty }{\left[{\frac {2n}{p^{i}}}\right]}-2\sum _{i=1}^{\infty }{\left[{\frac {n}{p^{i}}}\right]}\right)}\right)}}
N
=
∏
p
≤
2
n
(
p
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
)
{\displaystyle N=\prod _{p\leq {2n}}{\left(p^{\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\right)}}
An nou pran logarithm Neperyen de manm egalite ya.
L
n
N
=
L
n
(
∏
p
≤
2
n
(
p
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
)
)
{\displaystyle LnN=Ln\left(\prod _{p\leq {2n}}{\left(p^{\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\right)}\right)}
L
n
N
=
∑
p
≤
2
n
(
L
n
(
(
p
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
)
)
)
{\displaystyle LnN=\sum _{p\leq {2n}}{\left(Ln\left({\left(p^{\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\right)}\right)\right)}}
L
n
N
=
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
{\displaystyle LnN=\sum _{p\leq {2n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}}
An nou diseke sòm sa an 4 tèrm .
L
n
N
=
∑
n
<
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
∑
2
n
3
<
p
≤
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
∑
2
n
<
p
≤
2
n
3
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
{\displaystyle LnN=\sum _{n<p\leq {2n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+\sum _{{\frac {2n}{3}}<p\leq {n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+\sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}}
pou premye tèm lan nou genyen :
∑
n
<
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
∑
n
<
p
≤
2
n
(
L
n
p
)
{\displaystyle \sum _{n<p\leq {2n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=\sum _{n<p\leq {2n}}{\left(Lnp\right)}}
....
kidonk
∑
n
<
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
∑
1
≤
p
≤
2
n
(
L
n
p
)
−
∑
1
≤
p
≤
n
(
L
n
p
)
=
θ
(
2
n
)
−
θ
(
n
)
{\displaystyle \sum _{n<p\leq {2n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=\sum _{1\leq {p}\leq {2n}}{\left(Lnp\right)}-\sum _{1\leq {p}\leq {n}}{\left(Lnp\right)}=\theta \left(2n\right)-\theta \left(n\right)}
n
<
p
≤
2
n
⇒
1
2
n
≤
1
p
<
1
n
⇒
n
2
n
≤
n
p
<
n
n
⇒
1
2
≤
n
p
<
1
⇒
[
n
p
]
=
0
{\displaystyle n<p\leq {2n}\Rightarrow {{\frac {1}{2n}}\leq {\frac {1}{p}}<{\frac {1}{n}}}\Rightarrow {{\frac {n}{2n}}\leq {\frac {n}{p}}<{\frac {n}{n}}}\Rightarrow {{\frac {1}{2}}\leq {\frac {n}{p}}<1}\Rightarrow \left[{\frac {n}{p}}\right]=0}
∀
i
>
0
,
n
p
i
{\displaystyle \forall i>0,{\frac {n}{p^{i}}}}
[
n
p
i
]
=
0
{\displaystyle \left[{\frac {n}{p^{i}}}\right]=0}
sou yon lòt ang
n
<
p
≤
2
n
⇒
1
2
n
≤
1
p
<
1
n
⇒
2
n
2
n
≤
2
n
p
<
2
n
n
⇒
1
≤
2
n
p
<
2
⇒
[
2
n
p
]
=
1
{\displaystyle n<p\leq {2n}\Rightarrow {{\frac {1}{2n}}\leq {\frac {1}{p}}<{\frac {1}{n}}}\Rightarrow {{\frac {2n}{2n}}\leq {\frac {2n}{p}}<{\frac {2n}{n}}}\Rightarrow {1\leq {\frac {2n}{p}}<2}\Rightarrow \left[{\frac {2n}{p}}\right]=1}
∀
p
,
p
≤
2
{\displaystyle \forall p,p\leq 2}
p
≤
2
⇒
1
p
≤
1
2
{\displaystyle p\leq 2\Rightarrow {\frac {1}{p}}\leq {\frac {1}{2}}}
nou genyen sou baz ipotèz la
1
p
≤
2
n
p
2
<
2
p
≤
1
{\displaystyle {\frac {1}{p}}\leq {\frac {2n}{p^{2}}}<{\frac {2}{p}}\leq 1}
2
n
p
2
<
1
{\displaystyle {\frac {2n}{p^{2}}}<1}
pou tout
i
>
2
,
[
2
n
p
i
]
=
0
{\displaystyle i>2,\left[{\frac {2n}{p^{i}}}\right]=0}
An nou konsidere dezyèm sòm lan
∑
2
n
3
<
p
≤
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
{\displaystyle \sum _{{\frac {2n}{3}}<p\leq {n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}}
2
n
3
<
p
≤
n
⇒
1
n
≤
1
p
<
3
2
n
⇒
n
n
≤
n
p
<
3
n
2
n
⇒
1
≤
n
p
<
3
2
⇒
[
n
p
]
=
1
{\displaystyle {\frac {2n}{3}}<p\leq n\Rightarrow {{\frac {1}{n}}\leq {\frac {1}{p}}<{\frac {3}{2n}}}\Rightarrow {{\frac {n}{n}}\leq {\frac {n}{p}}<{\frac {3n}{2n}}}\Rightarrow 1\leq {\frac {n}{p}}<{\frac {3}{2}}\Rightarrow \left[{\frac {n}{p}}\right]=1}
2
n
3
<
p
≤
n
⇒
1
n
≤
1
p
<
3
2
n
⇒
2
n
n
≤
2
n
p
<
3
⇒
2
≤
2
n
p
<
3
⇒
[
2
n
p
]
=
2
{\displaystyle {\frac {2n}{3}}<p\leq n\Rightarrow {{\frac {1}{n}}\leq {\frac {1}{p}}<{\frac {3}{2n}}}\Rightarrow {{\frac {2n}{n}}\leq {\frac {2n}{p}}<3}\Rightarrow {2\leq {\frac {2n}{p}}<3}\Rightarrow \left[{\frac {2n}{p}}\right]=2}
[
2
n
p
]
−
2
[
n
p
]
=
2
−
2
×
1
=
0
{\displaystyle \left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]=2-2\times 1=0}
sou yon lòt ang ,
1
p
≤
n
p
2
<
3
2
p
<
3
2
×
2
{\displaystyle {\frac {1}{p}}\leq {\frac {n}{p^{2}}}<{\frac {3}{2p}}<{\frac {3}{2\times 2}}}
[
n
p
2
]
=
0
{\displaystyle \left[{\frac {n}{p^{2}}}\right]=0}
2
p
≤
2
n
p
2
<
3
×
2
2
×
p
{\displaystyle {\frac {2}{p}}\leq {\frac {2n}{p^{2}}}<{\frac {3\times 2}{2\times p}}}
2
p
≤
2
n
p
2
<
3
p
{\displaystyle {\frac {2}{p}}\leq {\frac {2n}{p^{2}}}<{\frac {3}{p}}}
si p = 2
1
≤
2
n
2
2
<
3
2
{\displaystyle 1\leq {\frac {2n}{2^{2}}}<{\frac {3}{2}}}
nap genyen lè sa a :
[
2
n
p
2
]
=
1
{\displaystyle \left[{\frac {2n}{p^{2}}}\right]=1}
1
≤
n
2
<
3
2
{\displaystyle 1\leq {\frac {n}{2}}<{\frac {3}{2}}}
kidonk tou nou tap genyen
n
<
3
{\displaystyle n<3}
si
n
≤
3
{\displaystyle n\leq 3}
An nou gade ki sa nou ap genyen
2
n
≥
3
×
2
{\displaystyle 2n\geq 3\times 2}
2
n
≥
6
{\displaystyle 2n\geq 6}
2
n
3
≥
2
{\displaystyle {\frac {2n}{3}}\geq 2}
2
≤
2
n
3
<
p
≤
n
{\displaystyle 2\leq {\frac {2n}{3}}<p\leq n}
kidonk
p
>
2
{\displaystyle p>2}
p
>
3
{\displaystyle p>3}
2
n
p
2
<
3
p
{\displaystyle {\frac {2n}{p^{2}}}<{\frac {3}{p}}}
1
p
<
1
3
{\displaystyle {\frac {1}{p}}<{\frac {1}{3}}}
3
p
<
1
{\displaystyle {\frac {3}{p}}<1}
2
n
p
2
<
3
p
<
1
{\displaystyle {\frac {2n}{p^{2}}}<{\frac {3}{p}}<1}
2
n
p
2
<
1
{\displaystyle {\frac {2n}{p^{2}}}<1}
[
2
n
p
2
]
=
0
{\displaystyle \left[{\frac {2n}{p^{2}}}\right]=0}
pou
n
≤
3
{\displaystyle n\leq 3}
e
i
≥
2
{\displaystyle i\geq 2}
[
2
n
p
i
]
=
0
{\displaystyle \left[{\frac {2n}{p^{i}}}\right]=0}
[
n
p
i
]
=
0
{\displaystyle \left[{\frac {n}{p^{i}}}\right]=0}
[
2
n
p
i
]
−
2
[
n
p
i
]
=
0
{\displaystyle \left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]=0}
kidonk pou tout
n
≥
3
{\displaystyle n\geq 3}
∑
2
n
3
<
p
≤
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
0
{\displaystyle \sum _{{\frac {2n}{3}}<p\leq {n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=0}
An nou konsidere twazyèm sòm lan
∑
2
n
<
p
≤
2
n
3
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
{\displaystyle \sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}}
An konsidere nan ki kondisyon inegalite ki anba somasyon ak gen sans :
2
n
≤
2
n
3
{\displaystyle {\sqrt {2n}}\leq {\frac {2n}{3}}}
2
n
≤
4
n
2
9
{\displaystyle 2n\leq {\frac {4n^{2}}{9}}}
18
n
≤
4
n
2
{\displaystyle 18n\leq 4n^{2}}
18
n
−
4
n
2
≤
0
{\displaystyle 18n-4n^{2}\leq 0}
2
n
(
9
−
2
n
)
≤
0
{\displaystyle 2n\left(9-2n\right)\leq 0}
9
−
2
n
≤
0
{\displaystyle 9-2n\leq 0}
9
≤
2
n
{\displaystyle 9\leq 2n}
9
2
≤
n
{\displaystyle {\frac {9}{2}}\leq n}
n
≥
9
2
{\displaystyle n\geq {\frac {9}{2}}}
n
≥
5
{\displaystyle n\geq 5}
An nou endike dabò ke
[
2
×
n
p
r
]
−
2
[
n
p
r
]
{\displaystyle \left[2\times {\frac {n}{p^{r}}}\right]-2\left[{\frac {n}{p^{r}}}\right]}
toujou egal oubyen ak zero oubyen ak 1 .
anfèt pou tout reyèl x nou genyen
[
2
x
]
−
2
[
x
]
{\displaystyle \left[2x\right]-2\left[x\right]}
egal oubyen a 0 oubyen ak 1 .
x
=
[
x
]
+
{
x
}
{\displaystyle x=\left[x\right]+\{x\}}
2
x
=
2
[
x
]
+
2
{
x
}
{\displaystyle 2x=2\left[x\right]+2\{x\}}
[
2
x
]
=
[
2
[
x
]
+
2
{
x
}
]
{\displaystyle \left[2x\right]=\left[2\left[x\right]+2\{x\}\right]}
[
2
x
]
=
2
[
x
]
+
[
2
{
x
}
]
{\displaystyle \left[2x\right]=2\left[x\right]+\left[2\{x\}\right]}
[
2
x
]
−
2
[
x
]
=
[
2
{
x
}
]
{\displaystyle \left[2x\right]-2\left[x\right]=\left[2\{x\}\right]}
0
≤
{
x
}
<
1
{\displaystyle 0\leq \{x\}<1}
0
≤
2
{
x
}
<
2
{\displaystyle 0\leq 2\{x\}<2}
[
2
x
]
−
2
[
x
]
=
[
2
{
x
}
]
{\displaystyle \left[2x\right]-2\left[x\right]=\left[2\{x\}\right]}
egal swa zero soit 1 .
[
2
n
p
i
]
−
2
[
n
p
i
]
{\displaystyle \left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]}
vo 0 oubyen 1 si
i
=
1
{\displaystyle i=1}
An nou montre ke li vo 0 nan tout lòt ka .
2
n
<
p
≤
2
n
3
⇒
2
n
<
p
2
≤
4
n
2
9
⇒
9
4
n
2
≤
1
p
2
<
1
2
n
⇒
9
n
4
n
2
≤
n
p
2
<
n
2
n
⇒
9
n
4
n
2
≤
n
p
2
<
1
2
⇒
[
n
p
2
]
=
0
{\displaystyle {\sqrt {2n}}<p\leq {\frac {2n}{3}}\Rightarrow 2n<p^{2}\leq {\frac {4n^{2}}{9}}\Rightarrow {\frac {9}{4n^{2}}}\leq {\frac {1}{p^{2}}}<{\frac {1}{2n}}\Rightarrow {\frac {9n}{4n^{2}}}\leq {\frac {n}{p^{2}}}<{\frac {n}{2n}}\Rightarrow {\frac {9n}{4n^{2}}}\leq {\frac {n}{p^{2}}}<{\frac {1}{2}}\Rightarrow \left[{\frac {n}{p^{2}}}\right]=0}
2
n
<
p
≤
2
n
3
⇒
2
n
<
p
2
≤
4
n
2
9
⇒
9
4
n
2
≤
1
p
2
<
1
2
n
⇒
9
n
4
n
2
≤
n
p
2
<
n
2
n
⇒
9
n
2
n
2
≤
2
n
p
2
<
1
⇒
2
n
p
2
+
j
<
1
,
∀
j
∈
N
{\displaystyle {\sqrt {2n}}<p\leq {\frac {2n}{3}}\Rightarrow 2n<p^{2}\leq {\frac {4n^{2}}{9}}\Rightarrow {\frac {9}{4n^{2}}}\leq {\frac {1}{p^{2}}}<{\frac {1}{2n}}\Rightarrow {\frac {9n}{4n^{2}}}\leq {\frac {n}{p^{2}}}<{\frac {n}{2n}}\Rightarrow {\frac {9n}{2n^{2}}}\leq {\frac {2n}{p^{2}}}<1\Rightarrow {\frac {2n}{p^{2+j}}}<1,\forall j\in \mathbb {N} }
∀
i
≥
2
,
2
n
p
i
<
1
{\displaystyle \forall i\geq 2,{\frac {2n}{p^{i}}}<1}
∀
i
≥
2
,
[
2
n
p
i
]
=
0
{\displaystyle \forall i\geq 2,\left[{\frac {2n}{p^{i}}}\right]=0}
∀
n
≥
5
{\displaystyle \forall n\geq 5}
∑
2
n
<
p
≤
2
n
3
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
∑
2
n
<
p
≤
2
n
3
(
(
[
2
n
p
]
−
2
[
n
p
]
)
×
L
n
P
)
+
∑
2
n
<
p
≤
2
n
3
(
(
∑
i
=
2
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
∑
2
n
<
p
≤
2
n
3
(
(
[
2
n
p
]
−
2
[
n
p
]
)
×
L
n
P
)
+
0
=
∑
2
n
<
p
≤
2
n
3
(
(
[
2
n
p
]
−
2
[
n
p
]
)
×
L
n
P
)
{\displaystyle \sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left(\left(\left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]\right)\times LnP\right)}+\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left({\left(\sum _{i=2}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left(\left(\left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]\right)\times LnP\right)}+0=\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left(\left(\left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]\right)\times LnP\right)}}
ò
[
2
n
p
]
−
2
[
n
p
]
{\displaystyle \left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]}
oubyen egal ak 1 oubyen egal ak 0
Kidonk
[
2
n
p
]
−
2
[
n
p
]
≤
1
{\displaystyle \left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]\leq 1}
(
(
[
2
n
p
]
−
2
[
n
p
]
)
×
L
n
P
)
≤
L
n
p
{\displaystyle {\left(\left(\left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]\right)\times LnP\right)}\leq Lnp}
∑
2
n
<
p
≤
2
n
3
(
(
[
2
n
p
]
−
2
[
n
p
]
)
×
L
n
P
)
≤
∑
2
n
<
p
≤
2
n
3
L
n
p
{\displaystyle {\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left(\left(\left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]\right)\times LnP\right)}}\leq {\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{Lnp}}}
∑
2
n
<
p
≤
2
n
3
L
n
p
=
θ
(
2
n
3
)
−
θ
(
2
n
)
{\displaystyle {\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{Lnp}}=\theta \left({\frac {2n}{3}}\right)-\theta \left({\sqrt {2n}}\right)}
∑
2
n
<
p
≤
2
n
3
(
(
[
2
n
p
]
−
2
[
n
p
]
)
×
L
n
P
)
≤
θ
(
2
n
3
)
−
θ
(
2
n
)
{\displaystyle {\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left(\left(\left[{\frac {2n}{p}}\right]-2\left[{\frac {n}{p}}\right]\right)\times LnP\right)}}\leq {\theta \left({\frac {2n}{3}}\right)-\theta \left({\sqrt {2n}}\right)}}
∑
2
n
<
p
≤
2
n
3
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
θ
(
2
n
3
)
−
θ
(
2
n
)
{\displaystyle \sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq {\theta \left({\frac {2n}{3}}\right)-\theta \left({\sqrt {2n}}\right)}}
θ
(
2
n
)
=
L
n
2
+
L
n
3
+
.
.
.
+
L
n
p
(
π
(
2
n
)
)
≥
π
(
2
n
)
×
L
n
2
{\displaystyle \theta \left({\sqrt {2n}}\right)=Ln2+Ln3+...+Lnp_{\left(\pi \left({\sqrt {2n}}\right)\right)}\geq {\pi \left({\sqrt {2n}}\right)\times {Ln2}}}
−
θ
(
2
n
)
≤
−
π
(
2
n
)
×
L
n
2
{\displaystyle -\theta \left({\sqrt {2n}}\right)\leq {-\pi \left({\sqrt {2n}}\right)\times {Ln2}}}
θ
(
2
n
3
)
−
θ
(
2
n
)
≤
θ
(
2
n
3
)
−
π
(
2
n
)
×
L
n
2
{\displaystyle \theta \left({\frac {2n}{3}}\right)-\theta \left({\sqrt {2n}}\right)\leq {\theta \left({\frac {2n}{3}}\right)-\pi \left({\sqrt {2n}}\right)\times {Ln2}}}
Pou tout
n
≥
5
{\displaystyle n\geq 5}
∑
2
n
<
p
≤
2
n
3
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
θ
(
2
n
3
)
−
π
(
2
n
)
×
L
n
2
{\displaystyle \sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq {\theta \left({\frac {2n}{3}}\right)-\pi \left({\sqrt {2n}}\right)\times {Ln2}}}
An nou konsidere katryèm sòm lan
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}}
An nou raple ke
[
2
n
p
i
]
−
2
[
n
p
i
]
{\displaystyle \left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]}
swa egal ak 0 swa egal ak 1 .
yon lòt kote
[
2
n
p
i
]
≥
2
[
n
p
i
]
{\displaystyle \left[{\frac {2n}{p^{i}}}\right]\geq {2\left[{\frac {n}{p^{i}}}\right]}}
An nou gade apati de kilè
[
2
n
p
i
]
{\displaystyle \left[{\frac {2n}{p^{i}}}\right]}
toujou vo zero pou yon p fikse
[
2
n
p
i
]
=
0
⇔
2
n
p
i
<
1
⇔
2
n
<
p
i
⇔
p
i
>
2
n
⇔
L
n
p
i
>
L
n
2
n
⇔
i
L
n
p
>
L
n
2
n
⇔
i
>
L
n
2
n
L
n
p
⇔
i
>
[
L
n
2
n
L
n
p
]
⇔
i
≥
[
L
n
2
n
L
n
p
]
+
1
{\displaystyle \left[{\frac {2n}{p^{i}}}\right]=0\Leftrightarrow {\frac {2n}{p^{i}}}<1\Leftrightarrow {2n}<{p^{i}}\Leftrightarrow {p^{i}}>{2n}\Leftrightarrow Ln{p^{i}}>Ln{2n}\Leftrightarrow iLn{p}>Ln{2n}\Leftrightarrow i>{\frac {Ln2n}{Lnp}}\Leftrightarrow i>\left[{\frac {Ln2n}{Lnp}}\right]\Leftrightarrow i\geq \left[{\frac {Ln2n}{Lnp}}\right]+1}
, etandone ke i se yon antye natirèl ki pa egal ak 0 .
i
≥
[
L
n
2
n
L
n
p
]
+
1
⇒
[
2
n
p
i
]
−
2
[
n
p
i
]
=
0
{\displaystyle i\geq \left[{\frac {Ln2n}{Lnp}}\right]+1\Rightarrow \left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]=0}
sou ipotèz
n
≥
5
{\displaystyle n\geq 5}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
∑
p
≤
2
n
(
(
∑
i
=
1
[
L
n
2
n
L
n
p
]
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
∑
p
≤
2
n
(
(
∑
[
L
n
2
n
L
n
p
]
+
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=\sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\left[{\frac {Ln2n}{Lnp}}\right]}{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+\sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{\left[{\frac {Ln2n}{Lnp}}\right]+1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
∑
p
≤
2
n
(
(
∑
i
=
1
[
L
n
2
n
L
n
p
]
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
0
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=\sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\left[{\frac {Ln2n}{Lnp}}\right]}{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+0}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
=
∑
p
≤
2
n
(
(
∑
i
=
1
[
L
n
2
n
L
n
p
]
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
∑
p
≤
2
n
(
(
∑
i
=
1
[
L
n
2
n
L
n
p
]
1
)
×
L
n
p
)
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}=\sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\left[{\frac {Ln2n}{Lnp}}\right]}{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq {\sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\left[{\frac {Ln2n}{Lnp}}\right]}{1}\right)}\times Lnp\right)}}}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
∑
p
≤
2
n
(
[
L
n
2
n
L
n
p
]
×
L
n
P
)
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq \sum _{p\leq {\sqrt {2n}}}{\left(\left[{\frac {Ln2n}{Lnp}}\right]\times LnP\right)}}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
∑
p
≤
2
n
(
[
L
n
2
n
L
n
p
]
×
L
n
p
)
≤
∑
p
≤
2
n
(
L
n
2
n
L
n
p
×
L
n
p
)
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq \sum _{p\leq {\sqrt {2n}}}{\left(\left[{\frac {Ln2n}{Lnp}}\right]\times Lnp\right)}\leq \sum _{p\leq {\sqrt {2n}}}{\left({\frac {Ln2n}{Lnp}}\times Lnp\right)}}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
∑
p
≤
2
n
(
[
L
n
2
n
L
n
p
]
×
L
n
p
)
≤
∑
p
≤
2
n
L
n
2
n
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq \sum _{p\leq {\sqrt {2n}}}{\left(\left[{\frac {Ln2n}{Lnp}}\right]\times Lnp\right)}\leq \sum _{p\leq {\sqrt {2n}}}{Ln2n}}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
∑
p
≤
2
n
(
[
L
n
2
n
L
n
p
]
×
L
n
p
)
≤
L
n
2
n
∑
p
≤
2
n
1
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq \sum _{p\leq {\sqrt {2n}}}{\left(\left[{\frac {Ln2n}{Lnp}}\right]\times Lnp\right)}\leq Ln2n\sum _{p\leq {\sqrt {2n}}}{1}}
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
≤
π
(
2
n
)
L
n
2
n
{\displaystyle \sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}\leq \pi \left({\sqrt {2n}}\right)Ln2n}
An nou raple ke
L
n
N
=
∑
n
<
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
∑
2
n
3
<
p
≤
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
∑
2
n
<
p
≤
2
n
3
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
+
∑
p
≤
2
n
(
(
∑
i
=
1
∞
(
[
2
n
p
i
]
−
2
[
n
p
i
]
)
)
×
L
n
p
)
{\displaystyle LnN=\sum _{n<p\leq {2n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+\sum _{{\frac {2n}{3}}<p\leq {n}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+\sum _{{\sqrt {2n}}<p\leq {\frac {2n}{3}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}+\sum _{p\leq {\sqrt {2n}}}{\left({\left(\sum _{i=1}^{\infty }{\left(\left[{\frac {2n}{p^{i}}}\right]-2\left[{\frac {n}{p^{i}}}\right]\right)}\right)}\times Lnp\right)}}
lè nou anvizaje tout estimasyon yo oswa tout estime yo nou kapab ekri :
pou tout
n
≤
5
{\displaystyle n\leq 5}
L
n
N
≤
(
θ
(
2
n
)
−
θ
(
n
)
)
+
0
+
(
θ
(
2
n
3
)
−
π
(
2
n
)
×
L
n
2
)
+
(
π
(
2
n
)
×
L
n
2
n
)
{\displaystyle LnN\leq \left(\theta \left(2n\right)-\theta \left(n\right)\right)+0+\left(\theta \left({\frac {2n}{3}}\right)-\pi \left({\sqrt {2n}}\right)\times Ln2\right)+\left(\pi \left({\sqrt {2n}}\right)\times Ln2n\right)}
θ
(
2
n
)
−
θ
(
n
)
≥
L
n
N
−
θ
(
2
n
3
)
+
π
(
2
n
)
(
L
n
2
−
L
n
2
n
)
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)\geq LnN-\theta \left({\frac {2n}{3}}\right)+\pi \left({\sqrt {2n}}\right)\left(Ln2-Ln2n\right)}
θ
(
2
n
)
−
θ
(
n
)
≥
L
n
N
−
θ
(
2
n
3
)
−
π
(
2
n
)
(
L
n
(
2
n
2
)
)
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)\geq LnN-\theta \left({\frac {2n}{3}}\right)-\pi \left({\sqrt {2n}}\right)\left(Ln\left({\frac {2n}{2}}\right)\right)}
θ
(
2
n
)
−
θ
(
n
)
≥
L
n
N
−
θ
(
2
n
3
)
−
π
(
2
n
)
L
n
2
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)\geq LnN-\theta \left({\frac {2n}{3}}\right)-\pi \left({\sqrt {2n}}\right)Ln2}
Li rete pou nou pwouve ke
L
n
N
−
θ
(
2
n
3
)
−
π
(
2
n
)
L
n
{\displaystyle LnN-\theta \left({\frac {2n}{3}}\right)-\pi \left({\sqrt {2n}}\right)Ln}
estriteman pozitif .
Nou te genyen
N
>
2
n
2
n
{\displaystyle N>{\frac {2^{n}}{2{\sqrt {n}}}}}
L
n
N
>
L
n
(
2
n
2
n
)
{\displaystyle LnN>Ln\left({\frac {2^{n}}{2{\sqrt {n}}}}\right)}
L
n
N
>
L
n
2
2
n
−
l
n
2
n
{\displaystyle LnN>Ln2^{2n}-ln{2{\sqrt {n}}}}
L
n
N
>
2
n
l
n
2
−
l
n
(
2
n
)
{\displaystyle LnN>2nln2-ln\left(2{\sqrt {n}}\right)}
L
n
N
>
2
n
L
n
2
−
L
n
2
−
L
n
n
{\displaystyle LnN>2nLn2-Ln2-Ln{\sqrt {n}}}
L
n
N
>
2
n
L
n
2
−
L
n
2
−
L
n
n
1
2
{\displaystyle LnN>2nLn2-Ln2-Ln{n^{\frac {1}{2}}}}
L
n
N
>
2
n
L
n
2
−
L
n
2
−
1
2
L
n
n
{\displaystyle LnN>2nLn2-Ln2-{\frac {1}{2}}Lnn}
Anplis lè
n
≤
2
{\displaystyle n\leq 2}
, nou genyen
θ
(
2
n
3
)
=
θ
(
[
2
n
3
]
)
<
2
×
[
2
n
3
]
L
n
2
<
4
n
3
L
n
2
{\displaystyle \theta \left({\frac {2n}{3}}\right)=\theta \left(\left[{\frac {2n}{3}}\right]\right)<2\times \left[{\frac {2n}{3}}\right]Ln2<{\frac {4n}{3}}Ln2}
−
θ
(
2
n
3
)
>
−
4
n
3
L
n
2
{\displaystyle -\theta \left({\frac {2n}{3}}\right)>-{\frac {4n}{3}}Ln2}
yon lòt kote,
π
(
n
)
≤
n
2
,
∀
n
≥
8
{\displaystyle \pi \left(n\right)\leq {\frac {n}{2}},\forall n\geq 8}
, etandone ke tout nonm pè pi gran ke 2 pa premye ou di mwens pa konpoze.
Nou vin genyen :
θ
(
2
n
)
−
θ
(
n
)
>
2
n
L
n
2
−
L
n
(
2
n
)
−
4
n
3
L
n
2
−
2
n
2
L
n
n
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)>2nLn2-Ln\left(2{\sqrt {n}}\right)-{\frac {4n}{3}}Ln2-{\frac {\sqrt {2n}}{2}}Lnn}
θ
(
2
n
)
−
θ
(
n
)
>
2
n
L
n
2
−
L
n
2
−
L
n
n
−
4
n
3
L
n
2
−
2
n
2
L
n
n
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)>2nLn2-Ln2-Ln{\sqrt {n}}-{\frac {4n}{3}}Ln2-{\frac {\sqrt {2n}}{2}}Lnn}
θ
(
2
n
)
−
θ
(
n
)
>
2
n
L
n
2
−
L
n
2
−
1
2
L
n
n
−
4
n
3
L
n
2
−
2
n
2
L
n
n
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)>2nLn2-Ln2-{\frac {1}{2}}Lnn-{\frac {4n}{3}}Ln2-{\frac {\sqrt {2n}}{2}}Lnn}
θ
(
2
n
)
−
θ
(
n
)
>
(
2
n
−
4
n
3
−
1
)
L
n
2
−
(
1
2
+
2
n
2
)
L
n
n
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)>\left(2n-{\frac {4n}{3}}-1\right)Ln2-\left({\frac {1}{2}}+{\frac {\sqrt {2n}}{2}}\right)Lnn}
θ
(
2
n
)
−
θ
(
n
)
>
(
2
n
3
−
1
)
L
n
2
−
(
1
+
2
n
2
)
L
n
n
{\displaystyle \theta \left(2n\right)-\theta \left(n\right)>\left({\frac {2n}{3}}-1\right)Ln2-\left({\frac {1+{\sqrt {2n}}}{2}}\right)Lnn}
Li rete pou nou pwouve ke manm dwat la pi gran ke zero e konsa ant n ak 2n nap va asire ke gen o mwen yon nonm premye .
(
2
n
3
−
1
)
L
n
2
−
(
1
+
2
n
2
)
L
n
n
>
0
⇔
2
n
−
3
2
L
n
n
L
n
2
−
3
2
L
n
2
L
n
4
n
4
n
>
0
{\displaystyle \left({\frac {2n}{3}}-1\right)Ln2-\left({\frac {1+{\sqrt {2n}}}{2}}\right)Lnn>0\Leftrightarrow {\sqrt {2n}}-{\frac {3}{2}}{\frac {Lnn}{Ln2}}-{\frac {3{\sqrt {2}}}{Ln2}}{\frac {Ln{\sqrt {4n}}}{\sqrt {4n}}}>0}
An nou pwouve ekivalans lan
2
n
−
3
2
L
n
n
L
n
2
−
3
2
L
n
2
L
n
4
n
4
n
>
0
⇔
2
4
n
L
n
2
×
2
n
−
3
4
n
L
n
n
−
6
2
L
n
4
n
2
4
n
L
n
2
>
0
⇔
4
n
L
n
2
×
2
n
−
3
4
n
L
n
n
−
6
2
L
n
4
n
>
0
{\displaystyle {\sqrt {2n}}-{\frac {3}{2}}{\frac {Lnn}{Ln2}}-{\frac {3{\sqrt {2}}}{Ln2}}{\frac {Ln{\sqrt {4n}}}{\sqrt {4n}}}>0\Leftrightarrow {\frac {2{\sqrt {4n}}Ln2\times {\sqrt {2n}}-3{\sqrt {4n}}Lnn-6{\sqrt {2}}Ln{\sqrt {4n}}}{2{\sqrt {4n}}Ln2}}>0\Leftrightarrow {\sqrt {4n}}Ln2\times {\sqrt {2n}}-3{\sqrt {4n}}Lnn-6{\sqrt {2}}Ln{\sqrt {4n}}>0}
4
n
L
n
2
×
2
n
−
3
4
n
L
n
n
−
6
2
L
n
4
n
>
0
⇔
2
8
n
2
L
n
2
−
6
n
L
n
n
−
6
2
L
n
4
n
⇔
4
n
2
L
n
2
−
6
n
L
n
n
−
6
2
L
n
4
n
>
0
⇔
4
n
2
L
n
2
−
6
n
L
n
n
−
6
2
(
L
n
4
+
L
n
n
)
⇔
4
n
2
L
n
2
−
6
n
L
n
n
−
6
2
(
L
n
2
+
1
2
L
n
2
)
>
0
{\displaystyle {\sqrt {4n}}Ln2\times {\sqrt {2n}}-3{\sqrt {4n}}Lnn-6{\sqrt {2}}Ln{\sqrt {4n}}>0\Leftrightarrow 2{\sqrt {8n^{2}}}Ln2-6{\sqrt {n}}Lnn-6{\sqrt {2}}Ln{\sqrt {4n}}\Leftrightarrow 4n{\sqrt {2}}Ln2-6{\sqrt {n}}Lnn-6{\sqrt {2}}Ln{\sqrt {4n}}>0\Leftrightarrow 4n{\sqrt {2}}Ln2-6{\sqrt {n}}Lnn-6{\sqrt {2}}\left(Ln{\sqrt {4}}+Ln{\sqrt {n}}\right)\Leftrightarrow 4n{\sqrt {2}}Ln2-6{\sqrt {n}}Lnn-6{\sqrt {2}}\left(Ln2+{\frac {1}{2}}Ln2\right)>0}
⇔
4
n
2
L
n
2
−
6
n
L
n
n
−
6
2
(
L
n
2
+
1
2
L
n
2
)
>
0
⇔
4
n
6
2
L
n
2
−
n
L
n
n
−
2
L
n
2
−
2
2
L
n
n
>
0
⇔
2
n
3
2
L
n
2
−
n
L
n
n
−
2
L
n
2
−
2
2
L
n
n
>
0
⇔
2
×
(
2
n
3
L
n
2
−
2
2
n
L
n
n
−
L
n
2
−
L
n
n
)
>
0
{\displaystyle \Leftrightarrow 4n{\sqrt {2}}Ln2-6{\sqrt {n}}Lnn-6{\sqrt {2}}\left(Ln2+{\frac {1}{2}}Ln2\right)>0\Leftrightarrow {\frac {4n}{6}}{\sqrt {2}}Ln2-{\sqrt {n}}Lnn-{\sqrt {2}}Ln2-{\frac {\sqrt {2}}{2}}Lnn>0\Leftrightarrow {\frac {2n}{3}}{\sqrt {2}}Ln2-{\sqrt {n}}Lnn-{\sqrt {2}}Ln2-{\frac {\sqrt {2}}{2}}Lnn>0\Leftrightarrow {\sqrt {2}}\times \left({\frac {2n}{3}}Ln2-{\frac {\sqrt {2}}{2}}{\sqrt {n}}Lnn-Ln2-Ln{\sqrt {n}}\right)>0}
⇔
2
×
(
2
n
3
L
n
2
−
2
2
n
L
n
n
−
L
n
2
−
L
n
n
)
>
0
⇔
(
2
n
3
−
1
)
L
n
2
−
2
2
n
L
n
n
−
L
n
n
>
0
⇔
(
2
n
3
−
1
)
L
n
2
−
2
2
n
L
n
n
−
1
2
L
n
n
>
0
⇔
(
2
n
3
−
1
)
L
n
2
−
(
1
+
2
n
2
)
L
n
n
>
0
{\displaystyle \Leftrightarrow {\sqrt {2}}\times \left({\frac {2n}{3}}Ln2-{\frac {\sqrt {2}}{2}}{\sqrt {n}}Lnn-Ln2-Ln{\sqrt {n}}\right)>0\Leftrightarrow \left({\frac {2n}{3}}-1\right)Ln2-{\frac {\sqrt {2}}{2}}{\sqrt {n}}Lnn-Ln{\sqrt {n}}>0\Leftrightarrow \left({\frac {2n}{3}}-1\right)Ln2-{\frac {\sqrt {2}}{2}}{\sqrt {n}}Lnn-{\frac {1}{2}}Lnn>0\Leftrightarrow \left({\frac {2n}{3}}-1\right)Ln2-\left({\frac {1+{\sqrt {2n}}}{2}}\right)Lnn>0}
An nou deziye pa
f
(
n
)
{\displaystyle f\left(n\right)}
2
n
−
3
2
L
n
n
L
n
2
−
3
2
L
n
2
L
n
4
n
4
n
{\displaystyle {\sqrt {2n}}-{\frac {3}{2}}{\frac {Lnn}{Ln2}}-{\frac {3{\sqrt {2}}}{Ln2}}{\frac {Ln{\sqrt {4n}}}{\sqrt {4n}}}}
An nou montre ke li pozitif pou tout
n
≥
2
6
{\displaystyle n\geq 2^{6}}
An etann fonksyon an sou tout
R
{\displaystyle \mathbb {R} }
f
(
x
)
=
2
x
−
3
2
L
n
x
L
n
2
−
3
2
L
n
2
L
n
4
x
4
x
{\displaystyle f\left(x\right)={\sqrt {2x}}-{\frac {3}{2}}{\frac {Lnx}{Ln2}}-{\frac {3{\sqrt {2}}}{Ln2}}{\frac {Ln{\sqrt {4x}}}{\sqrt {4x}}}}
an nou pwouve ke
f
(
2
6
)
>
0
{\displaystyle f\left(2^{6}\right)>0}
f
(
2
6
)
=
2
3
×
2
−
3
2
×
6
L
n
2
L
n
2
−
3
2
L
n
2
×
L
n
4
×
2
6
4
×
2
6
=
8
2
−
9
−
3
2
L
n
2
×
4
L
n
2
2
4
=
8
2
−
9
−
12
2
2
4
=
8
2
−
9
−
3
2
4
=
32
2
−
36
−
3
2
4
=
29
2
−
36
4
{\displaystyle f\left(2^{6}\right)=2^{3}\times {\sqrt {2}}-{\frac {3}{2}}\times {\frac {6Ln2}{Ln2}}-{\frac {3{\sqrt {2}}}{Ln2}}\times {\frac {Ln{\sqrt {4\times 2^{6}}}}{\sqrt {4\times 2^{6}}}}=8{\sqrt {2}}-9-{\frac {3{\sqrt {2}}}{Ln2}}\times {\frac {4Ln2}{2^{4}}}=8{\sqrt {2}}-9-{\frac {12{\sqrt {2}}}{2^{4}}}=8{\sqrt {2}}-9-{\frac {3{\sqrt {2}}}{4}}={\frac {32{\sqrt {2}}-36-3{\sqrt {2}}}{4}}={\frac {29{\sqrt {2}}-36}{4}}}
f
(
2
6
)
=
29
2
−
36
4
=
(
29
2
−
36
)
×
(
29
2
+
36
)
4
×
1
29
2
+
36
=
(
29
×
29
×
2
−
36
×
36
)
4
×
1
29
2
+
36
=
386
4
×
1
29
2
+
36
>
0
{\displaystyle f\left(2^{6}\right)={\frac {29{\sqrt {2}}-36}{4}}={\frac {\left({29{\sqrt {2}}-36}\right)\times \left({29{\sqrt {2}}+36}\right)}{4}}\times {\frac {1}{29{\sqrt {2}}+36}}={\frac {\left(29\times 29\times 2-36\times 36\right)}{4}}\times {\frac {1}{29{\sqrt {2}}+36}}={\frac {386}{4}}\times {\frac {1}{29{\sqrt {2}}+36}}>0}
an nou pwouve tou ke
f
′
(
x
)
>
0
{\displaystyle f'\left(x\right)>0}
pou tout
n
≥
2
6
{\displaystyle n\geq 2^{6}}
kidonk fonksyon f la estriteman kwasant
(
2
x
)
′
=
(
(
2
x
)
1
2
)
=
1
2
(
2
x
)
−
1
2
×
2
=
(
2
x
)
−
1
2
=
1
2
x
=
2
x
2
x
×
2
x
=
2
x
2
x
{\displaystyle \left({\sqrt {2x}}\right)'=\left(\left(2x\right)^{\frac {1}{2}}\right)={\frac {1}{2}}\left(2x\right)^{-{\frac {1}{2}}}\times 2=\left(2x\right)^{-{\frac {1}{2}}}={\frac {1}{\sqrt {2x}}}={\frac {\sqrt {2x}}{{\sqrt {2x}}\times {\sqrt {2x}}}}={\frac {\sqrt {2x}}{2x}}}
(
−
3
2
L
n
x
L
n
2
)
′
=
−
3
2
L
n
2
×
1
x
=
−
3
2
x
L
n
2
{\displaystyle \left(-{\frac {3}{2}}{\frac {Lnx}{Ln2}}\right)'=-{\frac {3}{2Ln2}}\times {\frac {1}{x}}={\frac {-3}{2xLn2}}}
(
4
x
)
′
=
(
(
4
x
)
1
2
)
′
=
1
2
×
(
4
x
)
1
2
×
4
=
2
×
(
4
x
)
1
2
=
2
4
x
=
2
4
x
4
x
=
4
x
2
x
=
x
x
{\displaystyle \left({\sqrt {4x}}\right)'=\left(\left(4x\right)^{\frac {1}{2}}\right)'={\frac {1}{2}}\times \left(4x\right)^{\frac {1}{2}}\times 4=2\times \left(4x\right)^{\frac {1}{2}}={\frac {2}{\sqrt {4x}}}={\frac {2{\sqrt {4x}}}{4x}}={\frac {\sqrt {4x}}{2x}}={\frac {\sqrt {x}}{x}}}
(
L
n
4
x
)
′
=
1
4
x
×
4
x
2
x
=
1
2
x
{\displaystyle \left(Ln{\sqrt {4x}}\right)'={\frac {1}{\sqrt {4x}}}\times {\frac {\sqrt {4x}}{2x}}={\frac {1}{2x}}}
oubyen
(
L
n
4
x
)
′
=
(
L
n
(
4
x
)
1
2
)
′
=
(
1
2
L
n
4
x
)
′
=
1
2
×
1
4
x
×
4
=
4
8
x
=
1
2
x
{\displaystyle \left(Ln{\sqrt {4x}}\right)'=\left(Ln\left(4x\right)^{\frac {1}{2}}\right)'=\left({\frac {1}{2}}Ln{4x}\right)'={\frac {1}{2}}\times {\frac {1}{4x}}\times 4={\frac {4}{8x}}={\frac {1}{2x}}}
(
L
n
4
x
4
x
)
′
=
1
2
x
×
4
x
−
4
x
2
x
×
L
n
4
x
(
4
x